
Flaxus
toplap flash based aplication
In short
Flaxus is a software developed under the TOPLAP manifesto, that carries out visual 
performances in real time. The graphic piece is generated by code at the same moment 
of its execution, thus, the artistic experience comes closer to a performance event such 
as music or dancing. But Flaxus also brings forth a new paradigm, since it allows a user 
to execute visuals that hundreds of other participants can watch activated by their 
indicidual audio in different parts of the world. Therefore, the same visual composition 
becomes reactive to individual musical perception anywhere. Flaxus is also a 
collaborative tool that promotes network tasking by allowing the real time creation of a 
piece amongst various executors connected through the internet.
Motive
We believe that electronic audiovisual arts still demand great experimentation and 
further insight into their fundamental search. Flaxus is a field work, a statement that 
privileges visual over musical performance. It uses network capabilities to create 
elements that simultaneously react to different environments. It fosters collaborations 
between people working at a distance, programming codes and live interpretative 
processes. We seek to investigate the boundaries of live visual performance.
Path
For the last couple of years we’ve been researching the live performance potential of 
electronic audiovisual arts. Trying to explore the similarities between playing a musical 
instrument live and generating visual contents in real time.
At first we turned to Visual Jockey or VJ, a visual performance in which an operator 
displays images that accompany audio. But we found that Vjing is closer to what a DJ 
does, since it involves mixing rather than composing. Even when the mix incorporates 
pieces of the VJ’s own authorship, it’s not quite what we’re looking for. Given that there 
is a huge difference between playing a tune live on a guitar composing a melody note by 
note, and mixing something, determining which previously recorded samples should be 
heard at a certain time. The same is true for VJing. This kind of performance is never 
100% live, as playing a piano would be.
We then determined it was important to define the smallest visual unit, comparable to a 
note in music. The problem is music only has one axis of data, whereas a digital image 
contains a lot more information. A note is a wave moving in just one direction, with 
different values over time, while a flat visual display has at least two axis that run 
perpendicularly to make up a grid of pixels.
Additionally, the surface is related to a fraction of visual time, around 1/30 and 1/12 of 
a second. By attempting to make a metaphorical translation from music to image 
processin, we could only control minimal data in a timeline, we were only able to turn 
certain elements on and off, slightly shifting color or shape.
We then realized we could not metaphorically translate the wave creation process to an 
image. Otherwise the visual composition would involve different values of only one color 
occupying the whole surface, or in the best case scenario, offer a slightly more complex 
variable that could not fulfill our expectations.
At this point we noticed an indirect relation existed between playing an instrument and 
writing computer code. Researching further into this, we came across the TOPLAP 
manifesto. It originally began as a musical trend, but currently also has a visual branch.
The manifesto deals with the same issues that we are interested in, mainly concerning 
the performance potential of electronic arts, and it arrives to our same conclusion. 
TOPLAP sets a platform for programming visual content. Code is written and structured 
in way that is understandable to the machine, which in turn translates it into images. 
Hence, the performer is compelled to constantly act out in order to keep the image 
flowing in an esthetic way.
This solution is very similar to the act of playing live music, and may even be considered 
a return to the origins of electronic music and the ideals of pioneers such as Varesse. In 
the early stages of electronic music there was a keen interest in achieving a way to 
replicate a performance through electronic means. Since at the time the final outcome 
of the execution of a musical piece was influenced by many variables, such as the 
musicians, the location, the conductor, the audience, etc..
We are interested in rescuing the factor of error implied in live performance, as well as 
its ephemeral quality. Conveniently for our purposes, under the TOPLAP manifesto the 
code produced in the act is lost, pertaining the fleeting aspect of live performance.
Another principle stated in the manifesto, is that the code should remain visible to the 
public at all times. Pretty much in the same way as the guitarist’s movements are a 
visible part of the music he plays, even if the straddling fingers make no sense to the 
audience.
Consequently we decided to create a soft that responds to all the principles in this 
manifesto. We are not the first to do this, the choice of name acknowledges this fact. 
There is a previous software, named Fluxus after the homonymous artistic movement. 
We chose the name Flaxus, to honor the same genesis but replaced the initial syllable 
for “Fla” a common suffix in software when the program in question has some kind of 
relationship with Flash. And of course this is the software we developed our application 
in. But instead of stopping there we went one step further with our software, by 
incorporating network capabilities, particularly the concept and atomic dispersal Internet 
allows.
Our software was built with the aim of reformulating live visuals. It basically allows 
someone to generate visual sketches by composing them live, while somewhere else on 
the planet another person can watch them live. Though, the contents aren’t passively 
transmitted from one place to the other. A passive transmission would imply taking the 
whole data from one point to the other without alterations or major distortions, except 
for the unavoidable loss of quality that transmission provokes. This is the case, for 
instance, of radio and television transmissions.
Rather our software has as in its core a series of elements that react to audio stimuli. 
Thus, the visual composition is altered by the interaction with the music applied to it.
We propose a shift in audiovisual practice by establishing the image as an engine of the 
whole experience. The different users can apply to it any music they want. 
Consequently, as a user writes live code, it is reinterpreted everywhere else in the world 
and react to the sound or music heard in that particular place and time.
As a result, visual compositions cease to be rigid and become adaptable to various 
circumstances. But the flexibility attained is not limited to the sort of linear transmission 
consisting of a transmitter and a receiver. Digital channels allow a circular performance.
Flaxus makes performance a collaborative affair. Instead of there being a single 
performer, a spectator can act out and modify the piece for the rest of the audience 
(who at any time can become performers) to see. Thus, the performance becomes a 
group dialogue between many parties. The opposition between the performer and the 
audience is dissolved and can even be inverted.
The esthetic error is incorporated as a basis of the system. In each place the final 
perception of the execution can be completely different without altering the piece’s 
artistic composition at all.
Grammar
The logical structure of this programming language is based on a system of modular 
hierarchies. They are inserted one inside of another and are solved from the inside out, 
clearing the unknown quantity the same way as in maths. Each structure generally has 
a verb as its first element and as a second one a noun that operates on the verb. The 
noun is sometimes followed by different adjectives or secondary verbs that operate on 
it. These structures are always placed between parenthesis.
Here’s an example of a verb in use:
(Build_Cube)
Creates a cube
(deleteModel ACTIVE_MODEL)
This phrase is composed of a verb and a noun and it tells the system to delete the last 
active model, that is, the last model created or accessed. 
(Build_Cube 30)
This creates a cube at a scale of 30. In this case the noun is implied.
(setVar miCubo ACTIVE_MODEL)
Here “miCubo” is the denomination for a new noun with the solved value of an 
adjective.

There is also another type of structure that refers to a group, and usually its first value 
is an element of that group.
(math random)
In this case the system takes the random value of the math element.

The structures can also replace values within other structures.
(setPosition (math random 100) 0 0)
The verb “set position” operates automatically on the last model created, changing its 
position according to the three adjectives or parameters submitted, which respectively 
represent X Y Z.
In the example the value of X is given by a random value between 0 and 100.

Consequently, the structures may serve not only as an action, but also as a definition 
for a value involved in an action of greater hierarchy.

Capabilities
Flaxus is an experimental conceptual tool. It’s a not high performance software. It has 
great educational value, in the same way as John Maeda’s MIT Design By Numbers did 
or as Ben Fry (Broad Institute) and Casey Reas’s (UCLA Designs | Media Arts) 
Processing does.
The tool allows the user to create simple 3D polygons in real time in a space that reacts 
to sound. 
It support the use of 2D and 3D particles; 
variables management and mathematical calculations; 
bitmap creation in real time; 
different layer blending operations; 
the use of textures, fonts and gradients generated in eral time; 
as well as direct operations on videos and bitmaps such as Kerneling, Convolution 
Filters, Bitmap Copy, Video Feedback, etc. 
All of these processes are executed in real time. 

Furthermore, Flaxus is a collaborative tool that allows different people to operate 
simultaneously on the same piece as they instantly share the code and its execution.
Technology
The entire software was built in Adobe Flash 8, a tool initially conceived to develop 
animations which currently has a powerful language oriented to esthetic programming. 
Which also lets us perform real time operations on bitmaps. Moreover it can run on any 
platform that supports the Adobe Flash 8 Palyer, thus as well as being multiplatform the 
software is able to run embedded in a web site.
What’s Next
We will begin by adding documentation and examples. Seeing as we believe that 
example analysis is one of the strongest and most effective ways of understanding a 
tool.
The software is still at a beta stage, so from here on in we’ll be correcting errors pointed 
out by the very community that uses it.
Hence the next step is implementing a series of forums so that the community may post 
questions, codes or scripts.
Community
The software is offered to the community under a GNU GPL License. 
Its use is free to any individual. 
The code is shared for anyone to correct or modify. 
We only ask that the sources and authors of the tool are clearly stated.

Non for commercial use

https://web.archive.org/web/20090125112216/http://www.toplap.org/
https://web.archive.org/web/20090125112216/http://www.toplap.org/
https://web.archive.org/web/20090125112216/http://www.toplap.org/
https://web.archive.org/web/20090125112216/http://www.toplap.org/
https://web.archive.org/web/20090125112216/http://www.pawfal.org/Software/fluxus/
https://web.archive.org/web/20090125112216/http://dbn.media.mit.edu/
https://web.archive.org/web/20090125112216/http://www.processing.org/
https://web.archive.org/web/20090125112216/http://www.adobe.com/products/flash/flashpro/
https://web.archive.org/web/20090125112216/http://www.adobe.com/shockwave/download/download.cgi?P1_Prod_Version=ShockwaveFlash
https://web.archive.org/web/20090125112216/http://creativecommons.org/licenses/GPL/2.0/


Flaxus
toplap flash based aplication
In short
Flaxus is a software developed under the TOPLAP manifesto, that carries out visual 
performances in real time. The graphic piece is generated by code at the same moment 
of its execution, thus, the artistic experience comes closer to a performance event such 
as music or dancing. But Flaxus also brings forth a new paradigm, since it allows a user 
to execute visuals that hundreds of other participants can watch activated by their 
indicidual audio in different parts of the world. Therefore, the same visual composition 
becomes reactive to individual musical perception anywhere. Flaxus is also a 
collaborative tool that promotes network tasking by allowing the real time creation of a 
piece amongst various executors connected through the internet.
Motive
We believe that electronic audiovisual arts still demand great experimentation and 
further insight into their fundamental search. Flaxus is a field work, a statement that 
privileges visual over musical performance. It uses network capabilities to create 
elements that simultaneously react to different environments. It fosters collaborations 
between people working at a distance, programming codes and live interpretative 
processes. We seek to investigate the boundaries of live visual performance.
Path
For the last couple of years we’ve been researching the live performance potential of 
electronic audiovisual arts. Trying to explore the similarities between playing a musical 
instrument live and generating visual contents in real time.
At first we turned to Visual Jockey or VJ, a visual performance in which an operator 
displays images that accompany audio. But we found that Vjing is closer to what a DJ 
does, since it involves mixing rather than composing. Even when the mix incorporates 
pieces of the VJ’s own authorship, it’s not quite what we’re looking for. Given that there 
is a huge difference between playing a tune live on a guitar composing a melody note by 
note, and mixing something, determining which previously recorded samples should be 
heard at a certain time. The same is true for VJing. This kind of performance is never 
100% live, as playing a piano would be.
We then determined it was important to define the smallest visual unit, comparable to a 
note in music. The problem is music only has one axis of data, whereas a digital image 
contains a lot more information. A note is a wave moving in just one direction, with 
different values over time, while a flat visual display has at least two axis that run 
perpendicularly to make up a grid of pixels.
Additionally, the surface is related to a fraction of visual time, around 1/30 and 1/12 of 
a second. By attempting to make a metaphorical translation from music to image 
processin, we could only control minimal data in a timeline, we were only able to turn 
certain elements on and off, slightly shifting color or shape.
We then realized we could not metaphorically translate the wave creation process to an 
image. Otherwise the visual composition would involve different values of only one color 
occupying the whole surface, or in the best case scenario, offer a slightly more complex 
variable that could not fulfill our expectations.
At this point we noticed an indirect relation existed between playing an instrument and 
writing computer code. Researching further into this, we came across the TOPLAP 
manifesto. It originally began as a musical trend, but currently also has a visual branch.
The manifesto deals with the same issues that we are interested in, mainly concerning 
the performance potential of electronic arts, and it arrives to our same conclusion. 
TOPLAP sets a platform for programming visual content. Code is written and structured 
in way that is understandable to the machine, which in turn translates it into images. 
Hence, the performer is compelled to constantly act out in order to keep the image 
flowing in an esthetic way.
This solution is very similar to the act of playing live music, and may even be considered 
a return to the origins of electronic music and the ideals of pioneers such as Varesse. In 
the early stages of electronic music there was a keen interest in achieving a way to 
replicate a performance through electronic means. Since at the time the final outcome 
of the execution of a musical piece was influenced by many variables, such as the 
musicians, the location, the conductor, the audience, etc..
We are interested in rescuing the factor of error implied in live performance, as well as 
its ephemeral quality. Conveniently for our purposes, under the TOPLAP manifesto the 
code produced in the act is lost, pertaining the fleeting aspect of live performance.
Another principle stated in the manifesto, is that the code should remain visible to the 
public at all times. Pretty much in the same way as the guitarist’s movements are a 
visible part of the music he plays, even if the straddling fingers make no sense to the 
audience.
Consequently we decided to create a soft that responds to all the principles in this 
manifesto. We are not the first to do this, the choice of name acknowledges this fact. 
There is a previous software, named Fluxus after the homonymous artistic movement. 
We chose the name Flaxus, to honor the same genesis but replaced the initial syllable 
for “Fla” a common suffix in software when the program in question has some kind of 
relationship with Flash. And of course this is the software we developed our application 
in. But instead of stopping there we went one step further with our software, by 
incorporating network capabilities, particularly the concept and atomic dispersal Internet 
allows.
Our software was built with the aim of reformulating live visuals. It basically allows 
someone to generate visual sketches by composing them live, while somewhere else on 
the planet another person can watch them live. Though, the contents aren’t passively 
transmitted from one place to the other. A passive transmission would imply taking the 
whole data from one point to the other without alterations or major distortions, except 
for the unavoidable loss of quality that transmission provokes. This is the case, for 
instance, of radio and television transmissions.
Rather our software has as in its core a series of elements that react to audio stimuli. 
Thus, the visual composition is altered by the interaction with the music applied to it.
We propose a shift in audiovisual practice by establishing the image as an engine of the 
whole experience. The different users can apply to it any music they want. 
Consequently, as a user writes live code, it is reinterpreted everywhere else in the world 
and react to the sound or music heard in that particular place and time.
As a result, visual compositions cease to be rigid and become adaptable to various 
circumstances. But the flexibility attained is not limited to the sort of linear transmission 
consisting of a transmitter and a receiver. Digital channels allow a circular performance.
Flaxus makes performance a collaborative affair. Instead of there being a single 
performer, a spectator can act out and modify the piece for the rest of the audience 
(who at any time can become performers) to see. Thus, the performance becomes a 
group dialogue between many parties. The opposition between the performer and the 
audience is dissolved and can even be inverted.
The esthetic error is incorporated as a basis of the system. In each place the final 
perception of the execution can be completely different without altering the piece’s 
artistic composition at all.
Grammar
The logical structure of this programming language is based on a system of modular 
hierarchies. They are inserted one inside of another and are solved from the inside out, 
clearing the unknown quantity the same way as in maths. Each structure generally has 
a verb as its first element and as a second one a noun that operates on the verb. The 
noun is sometimes followed by different adjectives or secondary verbs that operate on 
it. These structures are always placed between parenthesis.
Here’s an example of a verb in use:
(Build_Cube)
Creates a cube
(deleteModel ACTIVE_MODEL)
This phrase is composed of a verb and a noun and it tells the system to delete the last 
active model, that is, the last model created or accessed. 
(Build_Cube 30)
This creates a cube at a scale of 30. In this case the noun is implied.
(setVar miCubo ACTIVE_MODEL)
Here “miCubo” is the denomination for a new noun with the solved value of an 
adjective.

There is also another type of structure that refers to a group, and usually its first value 
is an element of that group.
(math random)
In this case the system takes the random value of the math element.

The structures can also replace values within other structures.
(setPosition (math random 100) 0 0)
The verb “set position” operates automatically on the last model created, changing its 
position according to the three adjectives or parameters submitted, which respectively 
represent X Y Z.
In the example the value of X is given by a random value between 0 and 100.

Consequently, the structures may serve not only as an action, but also as a definition 
for a value involved in an action of greater hierarchy.

Capabilities
Flaxus is an experimental conceptual tool. It’s a not high performance software. It has 
great educational value, in the same way as John Maeda’s MIT Design By Numbers did 
or as Ben Fry (Broad Institute) and Casey Reas’s (UCLA Designs | Media Arts) 
Processing does.
The tool allows the user to create simple 3D polygons in real time in a space that reacts 
to sound. 
It support the use of 2D and 3D particles; 
variables management and mathematical calculations; 
bitmap creation in real time; 
different layer blending operations; 
the use of textures, fonts and gradients generated in eral time; 
as well as direct operations on videos and bitmaps such as Kerneling, Convolution 
Filters, Bitmap Copy, Video Feedback, etc. 
All of these processes are executed in real time. 

Furthermore, Flaxus is a collaborative tool that allows different people to operate 
simultaneously on the same piece as they instantly share the code and its execution.
Technology
The entire software was built in Adobe Flash 8, a tool initially conceived to develop 
animations which currently has a powerful language oriented to esthetic programming. 
Which also lets us perform real time operations on bitmaps. Moreover it can run on any 
platform that supports the Adobe Flash 8 Palyer, thus as well as being multiplatform the 
software is able to run embedded in a web site.
What’s Next
We will begin by adding documentation and examples. Seeing as we believe that 
example analysis is one of the strongest and most effective ways of understanding a 
tool.
The software is still at a beta stage, so from here on in we’ll be correcting errors pointed 
out by the very community that uses it.
Hence the next step is implementing a series of forums so that the community may post 
questions, codes or scripts.
Community
The software is offered to the community under a GNU GPL License. 
Its use is free to any individual. 
The code is shared for anyone to correct or modify. 
We only ask that the sources and authors of the tool are clearly stated.

Non for commercial use

https://web.archive.org/web/20090125112216/http://www.toplap.org/
https://web.archive.org/web/20090125112216/http://www.toplap.org/
https://web.archive.org/web/20090125112216/http://www.toplap.org/
https://web.archive.org/web/20090125112216/http://www.toplap.org/
https://web.archive.org/web/20090125112216/http://www.pawfal.org/Software/fluxus/
https://web.archive.org/web/20090125112216/http://dbn.media.mit.edu/
https://web.archive.org/web/20090125112216/http://www.processing.org/
https://web.archive.org/web/20090125112216/http://www.adobe.com/products/flash/flashpro/
https://web.archive.org/web/20090125112216/http://www.adobe.com/shockwave/download/download.cgi?P1_Prod_Version=ShockwaveFlash
https://web.archive.org/web/20090125112216/http://creativecommons.org/licenses/GPL/2.0/


Flaxus
toplap flash based aplication
In short
Flaxus is a software developed under the TOPLAP manifesto, that carries out visual 
performances in real time. The graphic piece is generated by code at the same moment 
of its execution, thus, the artistic experience comes closer to a performance event such 
as music or dancing. But Flaxus also brings forth a new paradigm, since it allows a user 
to execute visuals that hundreds of other participants can watch activated by their 
indicidual audio in different parts of the world. Therefore, the same visual composition 
becomes reactive to individual musical perception anywhere. Flaxus is also a 
collaborative tool that promotes network tasking by allowing the real time creation of a 
piece amongst various executors connected through the internet.
Motive
We believe that electronic audiovisual arts still demand great experimentation and 
further insight into their fundamental search. Flaxus is a field work, a statement that 
privileges visual over musical performance. It uses network capabilities to create 
elements that simultaneously react to different environments. It fosters collaborations 
between people working at a distance, programming codes and live interpretative 
processes. We seek to investigate the boundaries of live visual performance.
Path
For the last couple of years we’ve been researching the live performance potential of 
electronic audiovisual arts. Trying to explore the similarities between playing a musical 
instrument live and generating visual contents in real time.
At first we turned to Visual Jockey or VJ, a visual performance in which an operator 
displays images that accompany audio. But we found that Vjing is closer to what a DJ 
does, since it involves mixing rather than composing. Even when the mix incorporates 
pieces of the VJ’s own authorship, it’s not quite what we’re looking for. Given that there 
is a huge difference between playing a tune live on a guitar composing a melody note by 
note, and mixing something, determining which previously recorded samples should be 
heard at a certain time. The same is true for VJing. This kind of performance is never 
100% live, as playing a piano would be.
We then determined it was important to define the smallest visual unit, comparable to a 
note in music. The problem is music only has one axis of data, whereas a digital image 
contains a lot more information. A note is a wave moving in just one direction, with 
different values over time, while a flat visual display has at least two axis that run 
perpendicularly to make up a grid of pixels.
Additionally, the surface is related to a fraction of visual time, around 1/30 and 1/12 of 
a second. By attempting to make a metaphorical translation from music to image 
processin, we could only control minimal data in a timeline, we were only able to turn 
certain elements on and off, slightly shifting color or shape.
We then realized we could not metaphorically translate the wave creation process to an 
image. Otherwise the visual composition would involve different values of only one color 
occupying the whole surface, or in the best case scenario, offer a slightly more complex 
variable that could not fulfill our expectations.
At this point we noticed an indirect relation existed between playing an instrument and 
writing computer code. Researching further into this, we came across the TOPLAP 
manifesto. It originally began as a musical trend, but currently also has a visual branch.
The manifesto deals with the same issues that we are interested in, mainly concerning 
the performance potential of electronic arts, and it arrives to our same conclusion. 
TOPLAP sets a platform for programming visual content. Code is written and structured 
in way that is understandable to the machine, which in turn translates it into images. 
Hence, the performer is compelled to constantly act out in order to keep the image 
flowing in an esthetic way.
This solution is very similar to the act of playing live music, and may even be considered 
a return to the origins of electronic music and the ideals of pioneers such as Varesse. In 
the early stages of electronic music there was a keen interest in achieving a way to 
replicate a performance through electronic means. Since at the time the final outcome 
of the execution of a musical piece was influenced by many variables, such as the 
musicians, the location, the conductor, the audience, etc..
We are interested in rescuing the factor of error implied in live performance, as well as 
its ephemeral quality. Conveniently for our purposes, under the TOPLAP manifesto the 
code produced in the act is lost, pertaining the fleeting aspect of live performance.
Another principle stated in the manifesto, is that the code should remain visible to the 
public at all times. Pretty much in the same way as the guitarist’s movements are a 
visible part of the music he plays, even if the straddling fingers make no sense to the 
audience.
Consequently we decided to create a soft that responds to all the principles in this 
manifesto. We are not the first to do this, the choice of name acknowledges this fact. 
There is a previous software, named Fluxus after the homonymous artistic movement. 
We chose the name Flaxus, to honor the same genesis but replaced the initial syllable 
for “Fla” a common suffix in software when the program in question has some kind of 
relationship with Flash. And of course this is the software we developed our application 
in. But instead of stopping there we went one step further with our software, by 
incorporating network capabilities, particularly the concept and atomic dispersal Internet 
allows.
Our software was built with the aim of reformulating live visuals. It basically allows 
someone to generate visual sketches by composing them live, while somewhere else on 
the planet another person can watch them live. Though, the contents aren’t passively 
transmitted from one place to the other. A passive transmission would imply taking the 
whole data from one point to the other without alterations or major distortions, except 
for the unavoidable loss of quality that transmission provokes. This is the case, for 
instance, of radio and television transmissions.
Rather our software has as in its core a series of elements that react to audio stimuli. 
Thus, the visual composition is altered by the interaction with the music applied to it.
We propose a shift in audiovisual practice by establishing the image as an engine of the 
whole experience. The different users can apply to it any music they want. 
Consequently, as a user writes live code, it is reinterpreted everywhere else in the world 
and react to the sound or music heard in that particular place and time.
As a result, visual compositions cease to be rigid and become adaptable to various 
circumstances. But the flexibility attained is not limited to the sort of linear transmission 
consisting of a transmitter and a receiver. Digital channels allow a circular performance.
Flaxus makes performance a collaborative affair. Instead of there being a single 
performer, a spectator can act out and modify the piece for the rest of the audience 
(who at any time can become performers) to see. Thus, the performance becomes a 
group dialogue between many parties. The opposition between the performer and the 
audience is dissolved and can even be inverted.
The esthetic error is incorporated as a basis of the system. In each place the final 
perception of the execution can be completely different without altering the piece’s 
artistic composition at all.
Grammar
The logical structure of this programming language is based on a system of modular 
hierarchies. They are inserted one inside of another and are solved from the inside out, 
clearing the unknown quantity the same way as in maths. Each structure generally has 
a verb as its first element and as a second one a noun that operates on the verb. The 
noun is sometimes followed by different adjectives or secondary verbs that operate on 
it. These structures are always placed between parenthesis.
Here’s an example of a verb in use:
(Build_Cube)
Creates a cube
(deleteModel ACTIVE_MODEL)
This phrase is composed of a verb and a noun and it tells the system to delete the last 
active model, that is, the last model created or accessed. 
(Build_Cube 30)
This creates a cube at a scale of 30. In this case the noun is implied.
(setVar miCubo ACTIVE_MODEL)
Here “miCubo” is the denomination for a new noun with the solved value of an 
adjective.

There is also another type of structure that refers to a group, and usually its first value 
is an element of that group.
(math random)
In this case the system takes the random value of the math element.

The structures can also replace values within other structures.
(setPosition (math random 100) 0 0)
The verb “set position” operates automatically on the last model created, changing its 
position according to the three adjectives or parameters submitted, which respectively 
represent X Y Z.
In the example the value of X is given by a random value between 0 and 100.

Consequently, the structures may serve not only as an action, but also as a definition 
for a value involved in an action of greater hierarchy.

Capabilities
Flaxus is an experimental conceptual tool. It’s a not high performance software. It has 
great educational value, in the same way as John Maeda’s MIT Design By Numbers did 
or as Ben Fry (Broad Institute) and Casey Reas’s (UCLA Designs | Media Arts) 
Processing does.
The tool allows the user to create simple 3D polygons in real time in a space that reacts 
to sound. 
It support the use of 2D and 3D particles; 
variables management and mathematical calculations; 
bitmap creation in real time; 
different layer blending operations; 
the use of textures, fonts and gradients generated in eral time; 
as well as direct operations on videos and bitmaps such as Kerneling, Convolution 
Filters, Bitmap Copy, Video Feedback, etc. 
All of these processes are executed in real time. 

Furthermore, Flaxus is a collaborative tool that allows different people to operate 
simultaneously on the same piece as they instantly share the code and its execution.
Technology
The entire software was built in Adobe Flash 8, a tool initially conceived to develop 
animations which currently has a powerful language oriented to esthetic programming. 
Which also lets us perform real time operations on bitmaps. Moreover it can run on any 
platform that supports the Adobe Flash 8 Palyer, thus as well as being multiplatform the 
software is able to run embedded in a web site.
What’s Next
We will begin by adding documentation and examples. Seeing as we believe that 
example analysis is one of the strongest and most effective ways of understanding a 
tool.
The software is still at a beta stage, so from here on in we’ll be correcting errors pointed 
out by the very community that uses it.
Hence the next step is implementing a series of forums so that the community may post 
questions, codes or scripts.
Community
The software is offered to the community under a GNU GPL License. 
Its use is free to any individual. 
The code is shared for anyone to correct or modify. 
We only ask that the sources and authors of the tool are clearly stated.

Non for commercial use

https://web.archive.org/web/20090125112216/http://www.toplap.org/
https://web.archive.org/web/20090125112216/http://www.toplap.org/
https://web.archive.org/web/20090125112216/http://www.toplap.org/
https://web.archive.org/web/20090125112216/http://www.toplap.org/
https://web.archive.org/web/20090125112216/http://www.pawfal.org/Software/fluxus/
https://web.archive.org/web/20090125112216/http://dbn.media.mit.edu/
https://web.archive.org/web/20090125112216/http://www.processing.org/
https://web.archive.org/web/20090125112216/http://www.adobe.com/products/flash/flashpro/
https://web.archive.org/web/20090125112216/http://www.adobe.com/shockwave/download/download.cgi?P1_Prod_Version=ShockwaveFlash
https://web.archive.org/web/20090125112216/http://creativecommons.org/licenses/GPL/2.0/

